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Problem statement
We want to find multiple, high-quality local minima
of the nonlinear optimization problem

minimize
x∈Rn

f(x)

subject to: x ∈ D

when D is compact, concurrent evaluations of f are
possible, and relatively little is known about f .

APOSMM
input: Local optimization method, random stream RS , tolerance ν.
for w = {1, . . . , c} do

Give w a point from RS at which to evaluate f .
for k = 0, 1, . . . do

Receive from worker w that has evaluated its point x̃.
if x̃ ∈ Ak then

if x̃’s run is complete then
Add minimizer to X∗

k ; remove points from run from Ak.
else

Query local optimization method and add subsequent point from x̃’s run to QL.
Update Hk; Update rk using (1).
Start local optimization method at points in Hk satisfying certain conditions; add the

subsequent point(s) to QL.
Kill runs with candidate minima within 2ν of each other, keeping the best run.
Give w a point x′ at which to evaluate f , either from QL or RS .
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Highlights
• Multistart algorithm that considers all previously

evaluated points when deciding where to start or
continue a local optimization run.

• Applicable to general optimization; its judicious
use of function evaluations is especially suited for
expensive derivative-free objectives.

• Time to solution scales well even when the time
to evaluate the objective is highly variable.

• The algorithm has strong theoretical properties
and performs well in practice.
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Finding multiple minima
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Performance scalability
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Ideal

Conditions
Samples: 6; r_k: 0.689 Samples: 44; r_k: 0.370 Samples: 45; r_k: 0.367

Cluster 1

Cluster 2

Cluster 3

Starting point

Snapshot
Iteration: 40; r_k: 0.353

Approximating global minima
f(x)− fG ≤ (1− 10−5) (f(x0)− fG)
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Theorem
• If f ∈ C2,
• there is a distance ϵ > 0 between local minima,
• the local optimization method is strictly descent,
• rk is defined by (1), then
APOSMM almost surely starts a finite number of
local optimization runs and every local minimum
is found or has a single local optimization run
asymptotically converging to it.
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